WORKSHEET 4-4 Stretch Algebra

Name	Block
Directions: Match the word with the definition	
1 Combination	A. An arrangement of things where order matters.
2. Event	B. All possible ways a series of events CAN happen
3. Fundamental Counting Principle	C. One individual outcome from a given sample space.
4. Outcomes	D. An organizational tool used for listing all possible outcomes of a series of events
5 Permutation	 E. an arrangement of things where order DOES NOT matter.
6 Sample Space	F. The number of ways 2 independent events can occur use the formula: m*n
7 Tree Diagram	G. Each way a series of events can happen

- **Directions:** Determine if each is a series of events (FCP), a Permutation $(_nP_r)$ or a Combination $(_nC_r)$. Then solve using the appropriate formula.
 - 8. Mrs. Denzin needs an outfit for school. She needs to choose a bottom, a top, and shoes for a complete outfit. She decides to choose from her long black skirt or her black pants for the bottom, a white dress shirt, red sweater, or gray tank for her top and her red leopard heels, black rhinestone high heels, red go-go boots or black low heels to choose from for shoes. How many different outfits can Mrs. Denzin make with those choices?
 - a. Fundamental Counting Principle? Permutation? Combination?
 - b. Solve
 - **9.** The Kaferly family will visit a complex of theme parks during their summer vacation. They have a four-day pass good for one park per day. They can choose from seven parks. How many different ways can they arrange their vacation schedule?
 - a. Fundamental Counting Principle? Permutation? Combination?
 - b. Solve

- **Directions:** Determine if each is a series of events (FCP), a Permutation $({}_{n}P_{r})$ or a Combination $({}_{n}C_{r})$. Then solve using the appropriate formula.
 - **10.** The math team wants to have practice two different days next week from Monday through Friday. How many schedules can be made?
 - a. Fundamental Counting Principle? Permutation? Combination?
 - b. Solve
 - **11.** How many sandwiches are possible if a restaurant lets you build your own sandwich by choosing any 4 of 10 sandwich ingredients?
 - a. Fundamental Counting Principle? Permutation? Combination?
 - b. Solve
 - **12.** Mike wants to order Beth a sweater for Christmas. He goes on-line and finds that the sweater he wants to get her comes in 8 sizes, 3 colors and 2 delivery methods. What are the number of possible sweater orders that could be made?
 - a. Fundamental Counting Principle? Permutation? Combination?
 - b. Solve

Directions: Simplify Completely. NO DECIMALS!!!

13.
$$-2 \cdot \left(\frac{-2}{5}\right)$$
 14. $-2 \div \left(\frac{-2}{5}\right)$ **15.** $\left(\frac{-6}{7}\right) \cdot \left(\frac{1}{3}\right)$

16.
$$\left(\frac{5}{6}\right) \cdot \left(\frac{7}{9}\right)$$
 17. $\left(\frac{5}{6}\right) \div \left(\frac{-2}{3}\right)$ **18.** $\left(\frac{-2}{7}\right) \div \left(-3\right)$

19.
$$\left(\frac{7}{9}\right) \div \left(\frac{-7}{18}\right)$$
 20. $\left(\frac{5}{3}\right) \bullet \left(\frac{-3}{4}\right)$